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Abstract
Fifteen-layered graphene films have been successfully deposited ontoflexible substrates using a
commercial ink consisting of graphene particles dispersed in an acrylic polymer binder. A value of

´ -74.9 10 cm5 2 was obtained for the density of defects, primarily located at the flake edges, from the
ratio of theD andGRaman peaks located at -1345 cm 1 and -1575 cm 1 respectively. m0.5 m thick
drop-cast films on interdigitated silver electrodes exhibitedOhmic conductionwith a small activation
energy of 12meVover the temperature range from 260 to 330 K.The photo-thermoelectric effect is
believed to be responsible for photoconduction through graphene films under illumination intensity
of 10mWm−2 at 270 nm, corresponding to theUV absorption peak. The photo-transient decay at
the bias of1 V involves two relaxation processes when the illumination is switched off and values of

´8.9 103 and ´4.3 10 s4 are found for the relaxation time constant using theKohlrauch stretched
exponential function analysis.

1. Introduction

The mechanical, electrical, and optical properties of
graphene are outstandingly promising for exploitation
in the wide range of possible applications such as field
effect transistors, sensors, for flexible and wearable
electronics [1–3]. Successful mechanical exfoliation of
highly oriented pyrolytic graphite sample to produce
thin layers of graphene has been reported in 2004. A
one atom thick single layer graphene consists of sp2-
hybridised carbon atoms arranged in a hexagonal
lattice. The overlap between the conduction and
valence bands is found to occur in ambipolar, mono-
crystalline thin films showing a large carrier concen-
tration of 1017 cm−2 and high mobility up to
10 000 cm2 V−1 s−1 [4]. Mechanical exfoliation and
chemical vapour deposition (CVD) are commonly
used to synthesise high quality graphene films, often in
conjunction with high temperature annealing to
reduce the number of defects [5]. Few-layer graphene
was grown on a catalyst copper foil substrate by
controlled thermal evaporation of polystyrene carbon

source under atmospheric pressure [6]. The semi-
metallic properties of zero band-gap and zero local
density of states at the Fermi level limit the significant
applications of pristine graphene in nanoelectronics.
Boron and nitrogen atoms are extensively used as
doping agents for graphene because of their similarity
with carbon atoms in atomic size. Nitrogen doping in
high concentration contributes electrons to deloca-
lised states of graphene, causing the shift of the Dirac
energy [7]. The choice of doping strategies is very
important to achieve stable performance of the device
over time. Stable, high transparency has been achieved
for CVD multilayer graphene doped with ferric
chloride and tin (II) chloride [8]. Transverse electric
fields are applied to the sample for tuning band gap
without involving any chemical doping. For example,
values of 250 meV and - -1000 cm V s2 1 1 were
obtained for tuneable band gap and mobility for an
exfoliated graphene bilayer used in a dual gate field-
effect transistor configuration between gold top and
platinumbottom electrodes [9].
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Printing is regarded being as an alternative, eco-
nomically viable technique for producing micro-
patternable conductive graphene films at room
temperature over large area on flexible substrates
under ambient conditions without using vacuum or
inert atmospheres. Graphene electrodes having low
sheet resistance of W 0.3M and high optical trans-
parency in the order of 86% has been successfully fab-
ricated by photothermal reduction of inkjet printed
graphene oxide sheets using the IR heat lamp in ambi-
ent environment for about 10 min [10]. The challenge
with printing graphene is in formulating the ink since
the various rheological properties such as density, sur-
face tension and viscosity have a strong effect on the
printing process. Low boiling point and environmen-
tally-friendly solvents, such as ethanol andwater in the
volume ratio of 1:1 gives a surface tension of
~ -31 m Nm 1 which meet the requirement of produ-
cing graphene- and few-layer graphene-based inks
[11]. If the graphene loading is too low, below the per-
colation threshold of the system, then there will be no
conductivity. A key advantage of graphene is its high
aspect-ratio, flake-like, structure which will result in a
much lower threshold than if it were low aspect-ratio
morphology. Above the percolation threshold the
conductivity will improve slightly as the loading is
increased, but at the expense of the coating’s mechan-
ical properties, such as flexibility and extensibility.
Poor mechanical stability can lead to cracks in the
films and a loss of conductivity. The nature of the bin-
der material is also critical in determining the flex-
ibility of the deposits [12]. The liquid-phase
exfoliation methods suffer from poor controllability
in size and thickness, poor production efficiency and
dispersion instability. The shear exfoliation technique
is recently reported to be faster than liquid-phase exfo-
liation methods and therefore is regarded as being
scalable for mass production using commercially
available inkjet printers ranging from desktop to roll-
to-roll. The graphene ink (GI) is formulated with the
graphene dispersion through tuning the viscosity by
adding ethylene glycol using amild sonication process.
During the process, ethyl cellulose is added as stabi-
liser in order to keep the shear exfoliated graphene
flakes stable inside the ink. The resulting few layer gra-
phene films are highly conductive and stable over sev-
eral months [13]. Graphene flake size should be fifty
times smaller than the printing nozzle diameter. The
flake size can be controlled by fluorination of multi-
layered graphene flakes in suspension of 3% aqueous
solution of hydrofluoric acid [14]. The aerogel is fabri-
cated by combining drop-on-demand 3Dprinting and
freeze casting into continuous, boundary free micro-
structure for 3D architectures [15].

We have recently reported a positive value of
´ - -1.5 10 K3 1 for the temperature coefficient of

resistance for printed m0.5 m thick graphene films on
flexible plastic substrates, over the temperature range
from 260 to 330 K [16]. In light of this preliminary

observation, further work has been undertaken to
investigate the scope of fabricating low cost graphene
thermistors and UV photosensors, using this material.
A number of earlier studies have focused on the use of
graphene in hybrid architectures for photodetector
devices [17]. This article presents the results of an
investigation into the photocurrent transient relaxa-
tion behaviour, of simple graphene films, that can be
printed over large area and on flexible substrates.
Raman Spectroscopy, Scanning Electron Microscopy
(SEM) andUV–Visible spectroscopy studies have been
carried out on graphene films, in an effort to get a bet-
ter understanding of the material’s structure and
morphology, and hence shed light on its interesting
electrical properties.

2. Experimental procedure

The commercially available ink from DZP technolo-
gies Ltd (product number G087) was formulated with
few-layer graphene particles of lateral dimensions

m<40 m, obtained by liquid phase exfoliation. The
graphene particles were then dispersed in an acrylic
polymer binder system to obtain the ink suitable for
deposition on polyethylene terephthalate (PET) sub-
strates (Melinex DuPont Teijin). Organic binding
additives are not normally used in graphene films
deposited for example byCVDprocesses. The ink used
in this work is specifically formulated for industrial,
large area printing and coating methods such as slot-
die, gravure and flexography which are high-speed,
volume manufacturing processes. However, the sam-
ples for electrical measurements consisted of drop cast
GI films, m ( )t0.5 m in thickness , on predesigned
interdigitated silver electrode structures, on PET
substrates. The dropcast method was chosen here for
the small scale, rapid deposition and the inkwasmixed
using high-speed mixer immediately before drop-
casting using amicro-pipette with a view to ensuring a
high degree of the film uniformity and reproducibility.
This interdigitated electrode structure has been chosen
in order to facilitate direct illumination on an enlarged
photodetection area. A Keithley 617 electrometer in
the microprocessor controlled measuring system was
employed to record both dark current and photocur-
rent characteristics as a function of bias voltage V for
the drop cast samples, which were held under vacuum
of -10 mbar5 in anOxford Instrument liquid nitrogen
constant bath cryostat. The mechanical stability of the
graphene coating was investigated by measuring the
room temperature resistance of drop cast films, on
0.1 mm thick PET substrates between two planar silver
electrodes at the ends of the film GI under both
extension and compression conditions of bending.
The PET substrate was much longer than the GI film
in order to apply uniform stress on theGI film.

A monochromator (HR320 Jobin-Yvon, HOR-
IBA) was used as a light source in the spectral range of
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300–700 nm for photoconduction experiments. UV–
visible absorption spectra of the printed film on quartz
substrates were recorded using a Perkin-Elmer
LAMBDA 650 spectrophotometer between 190 and
900 nm scanning at the rate 654.8 nmmin−1. The sur-
face microstructure of the GI drop-cast on an alumi-
nium foil was investigated using an S3400N scanning
electron microscope. The samples were characterised
bymeans of x-ray diffraction using Bruker D8 advance
scanning instrument. Cu Kα radiation of wavelength
0.15406 nm was used with scattering angle varied
between 10° and 90° at scanning rate of 0.02° per sec
for crystallographic analysis of the samples. The
Raman spectra were obtained by Horiba Jobin Yvon
Lab RAM HR800 with incident laser beam of wave-
length 514.5 nm (equivalent to the excitation laser
energy = )E 2.41 eVL of 2 μmspot size.

3. Results and discussions

Experimental results are analysed in order to derive
physically meaningful information regarding lattice
structure, defect type and density, and electrical and
optical device parameters. Values of material para-
meters have been compared with relevant published
data for identifying new knowledge.

3.1.Microstructural, crystallographic and
compositional studies
Figure 1 shows a scanning electron micrograph of the
graphene deposit. It is apparent that the lateral
dimensions of the flakes are in the micrometre range,
although of course their thickness is three orders of
magnitude smaller. Such materials pose challenges for
this form of microscopy because the thickness of the

flakes is massively smaller than the penetration depth
of the electron beam used, and is even small compared
to the range of secondary electrons used to form the
image. As a result the three-dimensional structure of
the whole near surface contributes to the image, rather
than the normal situation when the image is domi-
nated by the topography of the outermost surface.
Additionally, the backscattered electron and second-
ary yields of graphene are both extremely low [18], and
so ultimate resolution must be compromised in order
to achieve sufficient signal to form an image.

The XRD spectrum in figure 2 of the sample shows
a strong and sharp [002] peak at 26.19° corresponding
to an interlayer distance of =d 0.34 nm002 determined
using Bragg’s law,where the subscript (002) refers to the
diffraction plane. These results are in good agreement
with those obtained for exfoliated graphite oxide pre-
cursor after electrochemically reduction at 1.5 V, and
are close to those for pristine graphite [19]. A value of
5.57 nm is estimated for the average crystallite size,
D ,002 from theDebye–Scherrer formula in the form:

= l
b q

( )D , 1002
0.94

cos

where the value of the full width at half maximum
(FWHM) b = 1.5 is found from figure 2.

The number of graphene layers NGL is estimated
to be 15 from the expression = -( )D N d1002 GL 002

assuming D002 represents the thickness as measured
from the centre of the sample. The stacking of these
layers is responsible for the intensity and sharpness of
the [002] peak [20]. The additional weak peak at
2θ=13° due to the reflection from [010] plane
implies the presence of residual oxygenated functional
groups with interlayer spacing of 0.68 nm in the crys-
tallinematrix of GI [21].

Figure 1. SEMpicture of graphene ink sample drop cast on an aluminium foil.
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The Raman spectra in figure 3 for the GI sample
were recorded for the wavenumbers ranging from
1000 to 3000 cm−1. The characteristics peaks ofD and
G have been observed at 1345 cm−1 and 1575 cm−1

respectively in figure 3(a). These peak positions are in
agreement with those observed for the annealed gra-
phene layer ink-jet printed on a Si/SiO2 substrate [22].
The D band is due to the breathing modes of sp2 rings
of six-atom rings. The intense G band arises from in-
plane vibration of sp2 carbon atoms present in the

sample [23]. The intensity ratio of ID/IG is found to be
0.3, reflecting the defect concentration of carbonac-
eousmaterials [24]. A value of 20.6 nm is estimated for
an average inter-defect distance LD in nm using the
relation [25]:

= ´ -
( )⎡⎣ ⎤⎦L , 2

E

I

ID
2 4.3 10 1

D

G

3

L
4

where =E 2.41 eVL is the laser excitation energy.
Although the spot size is nominally 2 μm, the laser
beam is expected to penetrate into the depth of

Figure 2.X-ray diffraction spectrumof the drop-cast ink on an aluminium foil.

Figure 3.Raman spectrum for the graphene ink sample drop-cast on aluminium foil for (a) 1000 cm−1�λ−1�2000 cm−1 and (b)
2500 cm−1�λ−1�3000 cm−1

fittedwith three Lorentzian components.
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>50 nm encountering a large number of graphene
flakes. Therefore, the estimated value of LD is consid-
ered to be reasonable in the context of the scattering
within a large volume [26]. The value of

´ -74.9 10 cm5 2 is found for the defect density nD
from the knowledge that =

p( )
n .

LD
2 1

D
2 These defects

are believed to be located at the flake edges responsible
for activation by double resonance giving rise to theD
peak. Figure 3(b) shows that a broad 2D peak due to
absorptions by second order zone-boundary phonons
appears at 2690 cm−1, representing a blue-shift by
∼30 cm−1 in relation tomonolayer samples [27]. Also,
a value of 80 cm−1 for the FWHM of the 2D peak is
approximately three times larger than that reported
from single layer graphene. These observations are
consistent with earlier XRD studies that the sample is
multi-layered. This 2D peak, usually referred to as a
second-order overtone of the D peak, is not assigned
to the defects for their activation since its origin is
attributed to the momentum conservation by two
phonons with opposite wave vectors. However, the
positions of both D and 2D peak are dispersive
dependent on the laser excitation energy. Figure 3(b)
also illustrates an analysis of the 2D peak envelope,
assuming a Lorentzian peak shape. Three components
are found to fit the envelope with their peaks to be
located at 2675, 2700 and 2725 cm−1.

3.2. Steady state electricalmeasurements
As shown in figure 4(a), in-plane dc conductivity
measurements were made using the interdigitated
electrode systems with dimensions of =d 0.5 mm,

=W 0.82 cm and =N 5, where d,W and N are the
distance between the fingers, the overlapping width
and the number of fingers in the electrode system,
respectively. Figure 4(b) shows the current I versus
bias voltage V plots for the sample at =T 268 K and

=T 330 K. These I(V ) characteristics are linear
within the bias voltage regime, implying the Ohmic
nature of conduction. The dark Ohmic conductivity
sD of the GI sample is estimated to be

 -1642 123 S m 1 at 268 K from the relation:

s = - ( )( ) . 3
R

d N

t wD
1 1

.D

Values of dark Ohmic resistance RD were deter-
mined from the slope of individual ( )I V plot in
figure 4(a). This value of s = -1642 S mD

1 com-
pares well with one observed for a printed m0.22 m
thickmulti-layered graphene film which was annealed
at 400 °C. The ink was produced from ultrasonicated
ozonemodification of aqueous dispersions containing
exfoliated graphite [28]. Similarly a value of

 -1231 117 S m 1 was obtained for sD at 330 K. A

Figure 4. (a)Electrode configurations for in-plane conductivitymeasurements and (b) dark I(V ) characteristics for I(V )
characteristics of graphene ink sample for =T 268 K (broken line) and =T 330 K (solid line).
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comparable value of -1100 S m 1 for the room temper-
ature conductivity is reported for a ∼25 nm thick film
spin-coated with dispersions of few layered graphene
in N,N-dimethylformamide (0.7 mgml−1) solvent
[29]. However, the resistivity of thin printed samples
of UV-driven water-based graphene oxide/acrylic
poly(ethylene glycol) diacrylate nanocomposite is
reported to vary between 104 and W10 m6 with the
increase in the film thickness from 4 to 12 μm [30].
This shows the drop cast film of the present invest-
igation is considerably more conducting than these
nanocomposites.

Four further measurements were carried out at
temperatures between 268 and 330 K and the
dependence of the dark resistivity rD on T is shown in
figure 5(a). This behaviour of r ( )TD can be described
by a simplewell-known relation in the form:

r r= + µ[ ] ( )T1 , 4D D0

where rD0 and α denote the resistance at 0 K and the
temperature coefficient of resistivity of the GI sample.
The ratio of the slope to the intercept at =T 0 K gives

 ´ - -( )3.07 0.12 10 K3 1 for the temperature coef-
ficient α. This value is larger than one reported for
graphene nanowalls by an order of magnitude [31]. It
is, however, within the same order of magnitude as
other highly conducting materials such as copper and
silver [32]. The existence of positive temperature
coefficient may be attributed to an increase in the

interlayer distance with the rise of temperature,
thereby reducing the tunnelling current between the
layers [33]. The contributions of both optical phonons
and intervalley scattering by transverse and long-
itudinal modes become increasingly significant with
rising temperature [34]. The value of the activation
energyΔE is estimated to be 12 meV from the slope of
Arrenhius plot in figure 5(b) of s( )ln D as the inverse of
temperature -T .1 D = E 12 1.5 meV represents a
non-zero band gap between the conduction and
valence band and it is smaller than room temperature
thermal energy. The small value of D =E 12 meV in
the present work implies the possible break up of
lattice symmetry at the Dirac points (K) of the
graphene films due to the presence of defects [35]. This
observation is consistent with our earlier observations
from Raman and SEM studies. ΔE is generally
sensitive to the measurement environment such as the
presence of moisture, local humidity and the hydro-
phobicity of the binder resin. A value of
D =E 29 meV which is almost equal to thermal
energy is reported for CVD deposited graphene films
from Van Der Pauw conductivity measurement in
vacuum for the comparable temperature range [36].
Both temperature coefficient and activation energy
have been measured for graphene flake- and solar
exfoliated reduced graphene within a similar temper-
ature range with a view to developing wearable
temperature sensors. The temperature coefficient is
negative with the value of the same ordermagnitude as

Figure 5. (a)Dependence of dark resistivity rD onT and (b)Arrhenius plot of s( )ln D as the inverse of temperature -T .1
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obtained in the present investigation, implying the
potential applications of the present GI in the develop-
ment wearable temperature sensors. Also, values of
24.19 and 90.7 meV for activation energies of gra-
phene flake- and solar exfoliated reduced graphene
respectively are higher than one obtained in the
present drop-cast graphene film, indicating non-
metallic characteristics of these graphene [37].

3.3. Electrical properties under bending stress
The bending is commonly applied as strain for
uniaxial tensile stress. As shown in figure 6(a), the
strain was applied parallel to the length of the film so
that the electrodes were not subjected to any strain.
The strain is estimated in percentage from the

knowledge of the substrate thickness and radius of
curvature. Three radii of curvature of 2, 7 and 12 nm
were used. Figure 6(b) shows the results of the bending
test in terms of percentage change of resistances,
D( )R

R
BS

B0
due to stretching. RB0 is the fresh film

resistance prior to application of any stretching and
compression stress and D = -R R RBS BS B0 where

RBS is the resistance of the strained film. DR

R
BS

B0
is found

to increase with increasing strain, implying an increase
in the resistance (RBS) on stretching. Similar behaviour
was reported for CVD grown graphene layers [38].
Phenomenologically, the stretching causes the
increase in length of the film with simultaneous
decrease in its thickness and both these dimensional

Figure 6. (a)A schematic illustration of the electricalmeasurement for theflexible GL/PETdevice under strain. (b)Resistance change
relative to fresh film resistance RB0 for GIfilmunder stretching (triangle symbols) and compression (rectangle symbol)s, (c) recovery
of the graphene film onwithdrawal of (A) stretching and (B) compression strains.
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changes contribute to the increase in Ohmic resistance
on stretching. The Dirac points in the strained
graphene are believed to have undergone displacement
from the K points, possibly opening up the energy gap.
TheGI film surfacemay be not completely flat because
of imperfect adhesion to the PET substrate. The
scattering of charges due to the non-flat nature of the
strained GI surface may also contribute to the increase
in resistance [39]. The measurements were repeated
on the same film under compression over the same
strain range and the results are also illustrated in

figure 6(b) in the terms of the dependence of D( )R

R
BC

B0

on the compressing strain whereD = -R R RBC BC B0

in which RBC is the resistance of the compressed film.
As expected, the resistance is found to decrease with
the increase in the strain. The opposite dimensional
changes of the films occur on compression, reducing
the Ohmic film resistances. In order to investigate the
repeatability of the gauge performance, the resistance
of the film (RBw)was measured after the withdrawal of
bending stresses and the magnitude of recovery was

estimated as the ratio ( )R

R
Bw

B0
and it is evident from

figure 6(c), values of this ratio lie between 97% and
92% as the strain is reduced from 0.71% to 0.41% and
the recovery is consistent between both stretched and
compressed films. These results indicate a very good
degree of the flexibility of the GI films, leading to
possible application of these flexible GI films in
resistance strain gauges for measuring strain within
the range from0.41% to 0.71%.

3.4. Photoresponse studies
The UV–vis absorption spectrum in figure 7(a) for the
graphene film is due to for these interband transitions
showing a pronounced and asymmetric peak at
270 nm [40]. This peak position is in close agreement
with that observed for films deposited from n-methyl-
2-pyrrolidone and ethanol/water based dispersions
[11]. The peak is due to a van Hove singularity in the
density of states, which occurs close to the hopping
energy [41, 42]. The considerable red-shift with
respect to the absorption peak of graphene oxide at
226 nm implies reduced disruption of the π-conjuga-
tion in the multi-layered graphene film [43]. The flat
absorption band over the visible region results from
the linear dispersion of Dirac electrons in graphene.
The weak broad absorption band (shoulder) around
353 nm corresponds to residual graphitic sp2 domains
in the samples. However, other structural parameters
like the number of graphitic layers, curvature of
aromatic layers, crystallite size and so on, also affect
the shifting of (π–π*) bond position. The action
spectrum in figure 7(b) shows the dependence of
photocurrent on the incident wavelength, at a fixed
bias of 50 mV. As expected, it shows close similarities
to the UV–vis absorption spectrum, with a sharp peak
occurring at 270 nm. The minor differences may be
attributed to scattering and recombination of charges
in theGIfilm.

Figure 8(a) shows I(V ) characteristics from a GI
sample recorded between 10 mV were recorded at

=T 268 K and =T 330 K under illumination of a

Figure 7. (a)Room temperatureUV–vis spectrum for the used graphene ink and (b) action spectra.
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constant light intensity =P 10 m Wmi
2 corresp-

onding to the absorption peak at 270 nm. The result-
ing plots were found to be linear for both
temperatures. Values of photoconductivity sph are
estimated to be  -8.05 0.67 S m 1 and

 -2.8 0.16 S m 1 at 268 K and 330 K, respectively
using the following relation:

s = - - ( )( ) , 5R R

R R

d N

t wph
1

.
D il

D il

where Ril is the resistance for the GI sample under
illumination.

This decrease in sph by a factor of nearly 3 with an
increase in temperature of 62 K from268 to 330 Kmay
be interpreted by the photo-thermoelectric effect due
to a temperature gradient that is possibly produced
between the graphene layers under illumination. The
photocurrent in ordinary semiconductors is primarily
due to separation of excited electron–hole pairs by a

Figure 8. (a) I(V ) characteristics of graphene ink sample for =T 268 K (broken line) and =T 330 K (soild line) under illumination
of l = 270 nm. (b)Current versus time as the light was turned on and off is under illumination at 270 nm. (c)Kohlrauch equation
fitting (solid line) to the experimental decay of current curve (solid symbols)when the illuminated light was turned off between
370 and 490 s.
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built-in electric field. A photoexcited e–h pair leads to
ultrafast heating of the carriers in graphene because of
strong e–e interactions [44, 45].

The photoresponsivity, S, is defined as the ratio of
the photocurrent to the incident optical power Pi.
Therefore S can explicitly be written for the inter-
digitated electrode system in the form:

=
s

-
( )

( )
S . 6t w

d N N

V

P

.

12

ph

i

The value of photosensitivity S at 268 K is esti-
mated to be -161 A W 1 from equation (6). As the
temperature is raised to 330 K, S is found to decrease
to -56 A W .1 This value is of the same order of magni-
tude as one obtained for the hybrid films containing
graphene quantum dots in the reduced graphene
oxide matrix [46]. The specific detectivity D, can be
estimated from the knowledge of S using the expres-
sion

=
s -

( )
( ( ( )))

D , 7S

q d N2 tw 1D

where = ´ -q 1.6 10 C19 is the absolute value of
electronic charge. Using the expression above, values
of ´4.9 1012 Jones and ´1.9 1012 Jones were esti-
mated from equation (7) at 268 K and 330 K, respec-
tively. These values of the specific detectivity represent
the capability of the devices to detect a small photo
signal.

Values of the short circuit current Isc at zero bias,
V=0, are found to be m2.0 A and m0.4 A at 268 K
and 300 K, respectively, indicating that the number of
photo-generated charges are smaller at higher tem-
peratures for a given illumination strength [47]. Simi-
larly, values of 6.7 mV and 1.6 mV are estimated for
open circuit voltage Voc using I=0 for 268 K and
300 K, respectively. Figure 8(b) shows a typical current
versus time cycle for a fixed bias of 1 V as the light was
turned on and off. Two conducting states, high and
low, of the GI films are found to exist under illumina-
tion and the recovery to nearly low conducting occurs
when the illumination is switched off. The response
time tR is estimated to be 42 s from fitting the expo-

nential function = - -
t( )⎡

⎣⎢
⎤
⎦⎥i i 1 exp t

0
R

to exper-

imental rise curve in figure 8(b), where i0 is the
saturation photocurrent for =t 0 at which instant
light illumination was switched on at 150 s. This value
is found to be comparable with those obtained for the
UV sensors based upon reduced graphene oxide deco-
rated ZnO nanostructures [48]. Figure 8(c) presents
the results of the analysis of the time-dependent decay
of the photocurrent current in terms of the Kohlrauch
equation in the form:

= -
t

g( )( )( ) ( )i t i exp , 8t
0

D

where i0 is the saturation photocurrent for =t 0 at
which instant light illumination is switched off. The
stretching parameter g normally varies between
values of 0 and 1. For g = 1, the function in

equation (6) approaches classical single-exponential
behaviour and differences in energy transfer processes
become indistinguishable under this condition [49]. It
is obvious that the decay curve in the present work is
characterised by two regimes corresponding to (i) fast
and (ii) slow relaxation processes. Values of the
relaxation time constant, t ,D were found to be

´8.9 10 s3 and ´4.3 10 s4 for the time scale regime
(i) from 371 s to 463 s and (ii) from 463 s to 482 s
respectively by fitting equation (8) to the experimental
data. The present g = 0.82 may be ascribed to the
combined effect of both defects and potential barriers
between the edges of the single sheets within the
overall assemblies [50].

4. Concluding remarks

A low cost, easy fabrication method has been devel-
oped for depositing graphene films on flexible sub-
strates and their optoelectronic properties have been
investigated for practical applications. The films
studied in this article could be deposited using for
example rotary screen-printing, gravure or even off-
set lithography which are high-speed, volume manu-
facturing processes. The graphene film in the present
investigation is composed of multiple, randomly
distributed graphene nano-sheets, in contrast to CVD
produced graphene which is typically continuous
layers grown directly onto a substrate. It should also be
noted that a polymer binder is added to the ink. A
value of ´ - -3.07 10 K3 1 for the positive temperature
coefficient of resistivity of the graphene film is
comparable to that of commonmetals like copper and
silver and these graphene films may therefore be
employed in the manufacture of thermistors for their
uses as electronic components in resettable control
circuits. The graphene films show a high specific
detectivity, of the order of 1012 at its maximum
absorbance wavelength of 270 nm under a constant
light intensity of 10 mWm−2. Two distinct high and
low resistive states have been observed. The observa-
tion that the properties of our films are similar to ‘real’
graphene is important because these results may lead
to potential exploitation for low cost, large-scale
industrially development of highly efficient, large area
UV sensors using printed graphene films. Future work
will include optimisation of the deposition (printing)
procedure to obtain uniform films and investigation
into the effect of different polymer binders with a view
to improving the mechanical and chemical stability of
the film. The graphene content relative to that of
polymer binder and the nature of the binder will be
interesting features of further investigations into
design and fabrication of resistance strain gauges. It
may then be possible to improve the recovery perfor-
mance by using a binder with better elasticity for strain
gauge transducers.
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